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Özet
Bu çalışmada, Dikkat Eksikliği ve Hiperaktivite Bozukluğu (DEHB) tanısında elektroensefalografi (EEG) sinyal-

lerinin gelişmiş topluluk makine öğrenmesi (Advanced Ensemble Machine Learning) yaklaşımları ile analizi

gerçekleştirilmiştir. 60 Hertz kesme filtresi (60 Hz Notch Filter) kullanılarak, 121 kişilik (61 DEHB, 60 kon-

trol) kapsamlı veri kümesi üzerinde çoklu karmaşıklık analizi (Multi-Complexity Analysis) ve gelişmiş topluluk

sınıflandırma metodolojisi uygulanmıştır. Geliştirilmiş Higuchi Fraktal Boyutu (Enhanced Higuchi Fractal Di-

mension), Güç Spektral Özellikleri (Power Spectral Features), Hjorth Parametreleri (Hjorth Parameters) ve İs-

tatistiksel Özellikler (Statistical Features) gibi dört farklı özellik çıkarma yöntemi birleştirilerek her kişi için 399

özellik çıkarılmıştır. Yumuşak Oylama (Soft Voting) topluluk yaklaşımı en yüksek performansı göstererek %79.5

doğruluk (Accuracy) ve %79.0 F1-puanı (F1-Score) elde edilmiştir. 10 katmanlı çapraz doğrulama (10-Fold Cross-

Validation) ile güçlü değerlendirme yapılmış ve tüm performans ölçütleri için güven aralıkları hesaplanmıştır.

Bu çalışma, 60 Hertz güç hattı girişimi eliminasyonu ile DEHB-EEG analizinde yeni bir metodolojik standart

belirleyerek, klinik uygulamaya yönelik yüksek doğruluklu nesnel tanı desteği sunmaktadır.
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Abstract
In this study, electroencephalography (EEG) signal analysis using advanced ensemble machine learning ap-

proaches was performed for Attention Deficit Hyperactivity Disorder (ADHD) diagnosis. Using a 60 Hertz

notch filter, multi-complexity analysis and advanced ensemble classification methodology were applied to a

comprehensive dataset of 121 individuals (61 ADHD, 60 control). Four different feature extraction methods

including Enhanced Higuchi Fractal Dimension, Power Spectral Features, Hjorth Parameters, and Statistical

Features were combined to extract 399 features per individual. The Soft Voting ensemble approach showed the

highest performance, achieving 79.5% accuracy and 79.0% F1-score. Robust evaluation was performed with 10-

fold cross-validation and confidence intervals were calculated for all performancemetrics. This study establishes

a new methodological standard in ADHD-EEG analysis through 60 Hertz power line interference elimination,

providing high-accuracy objective diagnostic support for clinical applications.
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1. Giriş

Dikkat Eksikliği Hiperaktivite Bozukluğu (DEHB), çocuklarda en sık görülen nörogelişimsel bozukluklar-

dan biridir ve aynı zamanda bu rahatsızlıklar arasında en sık yanlış teşhis edilenlerden biri olarak kabul

edilir. Bu durum kısmen, tanı sürecinde kullanılan davranışsal gözlemlerin ve değerlendirme ölçeklerinin

öznel ve keyfi yapısından kaynaklanmaktadır. Bu öznel ve niceliksel olmayan değerlendirme yöntemleri

yanlış tanı riski taşımaktadır. Yanlış tanıya dayalı uygunsuz ilaç tedavisinin hastalar için uzun vadeli olum-

suz sonuçlara yol açabileceği bilinmektedir. Bu çalışmanın temel amacı, elektroensefalogram (EEG) ver-

ilerini analiz etmek için gelişmiş topluluk makine öğrenmesi teknikleri kullanan nesnel ve niceliksel bir

DEHB tanı tekniği geliştirmek ve böylece öznel değerlendirme yöntemleriyle ilişkili yanlış tanı riskini or-

tadan kaldırmaktır. Geleneksel tanı yöntemleri ve öznel davranışsal değerlendirme ölçekleri, farklı tanı uz-

manlarının deneyim ve yorumlarına dayanmaktadır. Bu dinamik süreç, aşırı doz, uygunsuz tedavi ve uzun
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vadeli psikolojik sonuçlar gibi olumsuz etkilere yol açabilen yanlış tanı riski taşımaktadır. EEG sinyallerinin

beyin aktivitesini nesnel ve nicel olarak ölçebilmesi nedeniyle, DEHB tanısı için güvenilir biyobelirteçlerin

elde edilebileceği varsayılmaktadır.

2. Metodoloji

2.1 Veri seti ve ön işleme

Bu çalışmada IEEE Dataport’tan alınan DEHB veri seti (ADHD Dataset) kullanılmıştır [23]. Veri seti 61

DEHB’li çocuk ve 60 sağlıklı çocuktan oluşmaktadır. Yaş aralığı 7-12 yaş arasındadır. DEHB tanısında

makine öğrenimi yöntemleri literatürde yaygın olarak kullanılmaktadır [23].

2.1.1 EEG kayıt parametreleri

Bu çalışmada kullanılan EEG veri seti, standart 10-20 uluslararası elektrot yerleşim sistemi (10-20 Inter-

national Electrode Placement System) göre 19 kanaldan kayıt edilmiştir. Kullanılan kanallar şunlardır: Fz,

Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1 ve O2. Bu kanal seçimi, beynin farklı

bölgelerinden (frontal, central, parietal, temporal ve oksipital) bilgi toplayarak kapsamlı bir analiz sağla-

maktadır. Örnekleme frekansı (Sampling Frequency) 128 Hertz olarak ayarlanmıştır. Ayrıca 60 Hertz kesme

filtresi (60 Hz Notch Filter) uygulanarak güç hattı girişimi (Power Line Interference) eliminasyonu gerçek-

leştirilmiştir. Her kayıt 60 saniye sürmekte ve toplam 15,000 örnek noktası (Sample Points) içermektedir.

Referans elektrotları olarak A1 ve A2 (kulak memesi) kullanılmıştır. Bu referans sistemi, standart klinik

EEG uygulamalarında yaygın olarak kullanılan ve güvenilir sonuçlar veren bir yaklaşımdır.
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Figure 1. DEHB EEG analizi için detaylı 19 kanal yerleşimi - Gerçek anatomik pozisyonlarla beyin ısı haritası görünümü
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Figure 2. DEHB EEG aktivite ısı haritası - Aktivite paternleri (79.5% doğruluk, 121 denek)

2.1.2 60 Hertz standardında ön işleme adımları

EEG sinyallerine 60 Hertz standardında kapsamlı ön işleme adımları (Preprocessing Steps) uygulanmıştır.

Bu süreç, sinyal kalitesini artırmak ve analiz sonuçlarının güvenilirliğini sağlamak için kritik öneme sahip-

tir. İlk olarak, 60 Hertz güç hattı frekansına karşı kesme filtresi (Notch Filter) uygulanmıştır. Bu filtre,

elektrik şebekesinden kaynaklanan girişimi ortadan kaldırarak temiz EEG sinyali elde edilmesini sağla-

maktadır. Ardından, veri formatı düzenleme işlemi (Data Format Conversion) gerçekleştirilmiştir. Mat-

lab dosyalarından (19 × 15,000) matris formatında veri çıkarımı yapılarak, analiz için uygun hale getir-

ilmiştir. Frekans alanında filtreleme işlemi (Frequency Domain Filtering) olarak, 0.5-60 Hertz aralığında

bant geçiren filtre (Bandpass Filter) uygulanmıştır. Bu aralık, EEG sinyallerinde klinik olarak anlamlı olan

delta, teta, alfa, beta ve gama dalga bantlarını kapsamaktadır. Düşük frekanslarda 0.5 Hertz alt sınırı, yavaş

dalga aktivitesini korurken, üst sınır olan 60 Hertz ise yüksek frekanslı gürültüyü elimine etmektedir.
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Figure 3. DEHB ve kontrol gruplarında EEG frekans bantları güç dağılımı

Artifact temizleme işlemi (Artifact Removal), 5 standart sapma eşiği (5 Standard Deviation Threshold) kul-

lanılarak gerçekleştirilmiştir. Bu yöntem, aşırı değerlerin tespit edilmesini ve bunların medyan değerlerle

değiştirilmesini sağlamaktadır. Segmentasyon işleminde (Segmentation), her kayıt 1.0 saniyelik parçalara

bölünerek toplam 33,676 segment elde edilmiştir. Bu segmentasyon, temporal çözünürlüğü artırmakta ve
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makine öğrenmesi algoritmalarının daha detaylı analiz yapmasına olanak tanımaktadır. Son olarak, Z-skor

normalizasyonu (Z-Score Normalization) uygulanarak her özellik için ortalama sıfır ve standart sapma bir

olacak şekilde standardizasyon (Standardization) sağlanmıştır. Bu işlem, farklı ölçeklerdeki özelliklerin

makine öğrenmesi algoritmalarında eşit ağırlıkta değerlendirilmesini garanti etmektedir.

2.2 Gelişmiş topluluk makine öğrenmesi yaklaşımı

Bu çalışmada, gelişmiş topluluk öğrenmesi teknikleri (Advanced Ensemble Learning Techniques) uygu-

lanmıştır. Topluluk öğrenmesi yaklaşımı (Ensemble Learning Approach), birden fazla makine öğrenmesi

modelinin güçlü yanlarını birleştirerek daha güvenilir ve doğru tahminler üretmeyi amaçlamaktadır. Bu

yaklaşım, tek bir modelin sınırlılıklarını aşarak genelleme performansını (Generalization Performance)

artırmaktadır.

2.2.1 Temel modeller

Topluluk öğrenmesi yaklaşımında, farklı öğrenme paradigmalarını temsil eden beş temelmodel kullanılmıştır.

Bu modeller, hem doğrusal hem de doğrusal olmayan sınıflandırma yeteneklerine sahip olup, farklı veri

örüntülerini yakalayabilmektedir.

Rastgele Orman (Random Forest) modeli, karar ağaçlarının topluluğu (Ensemble of Decision Trees)

olarak çalışmaktadır. Bu modelde 200 ağaç kullanılmış olup, aşırı öğrenmeyi (Overfitting) önlemek için

maksimum derinlik sınırlandırılmamıştır. Minimum örnek bölme sayısı (Minimum Samples Split) 2 olarak

ayarlanmış ve paralel işleme (Parallel Processing) için tüm işlemci çekirdekleri kullanılmıştır. Rastgele Or-

man, özellik önemini değerlendirme (Feature Importance Evaluation) konusunda mükemmel yeteneklere

sahiptir.

Lojistik Regresyon (Logistic Regression) modeli, doğrusal sınıflandırma (Linear Classification) için

kullanılmıştır. Maksimum iterasyon sayısı (Maximum Iterations) 1000 olarak belirlenmiş ve düzenleme

parametresi (Regularization Parameter) C değeri 1.0 olarak ayarlanmıştır. Bu model, özellikler arasındaki

doğrusal ilişkileri yakalayarak hızlı ve yorumlanabilir sonuçlar üretmektedir.

Destek Vektör Makinesi (Support Vector Machine - SVM) modeli, radyal taban fonksiyonu (Radial

Basis Function - RBF) çekirdeği kullanarak doğrusal olmayan sınıflandırma (Non-linear Classification)

gerçekleştirmektedir. C parametresi 1.0 olarak optimize edilmiş ve gamma değeri ’scale’ olarak ayarlan-

mıştır. Yumuşak oylama (Soft Voting) için olasılık hesaplaması (Probability Estimation) etkinleştirilmiştir.

SVM, yüksek boyutlu özellik uzaylarında (High-Dimensional Feature Spaces)mükemmel performans göster-

mektedir.

Gradyan Yükseltme (Gradient Boosting) modeli, zayıf öğrenicileri (Weak Learners) sıralı olarak bir-

leştiren bir yaklaşımdır. 150 ağaç kullanılmış, öğrenme oranı (Learning Rate) 0.1 olarak ayarlanmış ve

maksimum derinlik (MaximumDepth) 4 olarak sınırlandırılmıştır. Bu model, karmaşık örüntüleri öğrenme

konusunda üstün yeteneklere sahiptir.

AdaBoost (Adaptive Boosting) modeli, adaptif yükseltme algoritması (Adaptive Boosting Algorithm)

kullanarak zayıf öğrenicileri güçlendirmektedir. 100 ağaç kullanılmış ve öğrenme oranı (Learning Rate)

1.0 olarak ayarlanmıştır. AdaBoost, özellikle sınıf dengesizliği (Class Imbalance) olan veri setlerinde etkili

performans göstermektedir.

2.2.2 Topluluk (Ensemble) teknikleri

Topluluk (Ensemble) öğrenmesi yaklaşımında, temel modellerin tahminlerini birleştirmek için üç farklı

teknik kullanılmıştır. Bu teknikler, modellerin bireysel performanslarını aşarak daha güvenilir sonuçlar

elde etmeyi amaçlamaktadır.

Yumuşak Oylama (Soft Voting) tekniği, her modelin tahmin olasılıklarını (Prediction Probabilities) kul-

lanarak ağırlıklı ortalama (WeightedAverage) hesaplamaktadır. Bu yaklaşım, sadece sınıf etiketlerini (Class

Labels) değil, modelin tahmin güvenini (Prediction Confidence) de dikkate alarak daha sofistike bir bir-

leştirme sağlamaktadır. Yumuşak oylama, bu çalışmada en yüksek performansı gösteren yaklaşım olmuş-

tur.
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Yığınlama (Stacking) tekniği, meta-öğrenme yaklaşımı (Meta-LearningApproach) kullanarak temelmod-

ellerin tahminlerini ikinci seviye bir model (Second-Level Model) ile birleştirmektedir. Bu çalışmada, Lojis-

tik Regresyon ve Geliştirilmiş Gradyan Yükseltme olmak üzere iki farklı meta-öğrenici (Meta-Learner) kul-

lanılmıştır. Meta-eğitim (Meta-Training), çapraz doğrulama tabanlı olarak gerçekleştirilerek aşırı öğrenme

riski (Overfitting Risk) minimize edilmiştir.

Özellik Seçimi (Feature Selection) işlemi, 399 özellikten en bilgilendirici olan 50 tanesini seçmek için

kullanılmıştır. SelectKBest algoritması (SelectKBest Algorithm) ile F-istatistiği tabanlı seçim (F-Statistic

Based Selection) yapılmıştır. Bu işlem, boyutluluk lanetini (Curse of Dimensionality) ortadan kaldırarak

model performansını artırmakta ve hesaplama maliyetini düşürmektedir.

2.3 Çoklu karmaşıklık ölçümü yöntemleri

Bu çalışmada EEG sinyallerinin karmaşıklığını ölçmek için çoklukarmaşıklık analizi (Multi-Complexity
Analysis) uygulanmıştır. Bu yaklaşım, farklı matematiksel prensiplere dayanan beş farklı özellik çıkarma

yöntemini birleştirerek, EEG sinyallerinin temporal, frekans ve karmaşıklık özelliklerini kapsamlı bir şek-

ilde değerlendirmektedir.

Kullanılan özellik çıkarma yöntemleri (Feature Extraction Methods):

1. GeliştirilmişHiguchi Fraktal Boyutu (EnhancedHiguchi Fractal Dimension -HFD) - Zaman

serilerinin fraktal karmaşıklığı (Fractal Complexity of Time Series)

2. Güç Spektral Özellikleri (Power Spectral Features) - Frekans bantlarındaki güç dağılımı (Power

Distribution in Frequency Bands)

3. Hjorth Parametreleri - Temporal ve spektral sinyal özellikleri

4. İstatistiksel Özellikler - Temel istatistiksel ölçümler

Bu beş yöntem, EEG sinyallerinin farklı açılardan analiz edilmesini sağlayarak DEHB tanısı için güçlü

biyobelirteçler (Biomarkers) üretmektedir.

2.3.1 Geliştirilmiş Higuchi Fraktal Boyutu (Enhanced HFD)

Geliştirilmiş Higuchi Fraktal Boyutu (Enhanced Higuchi Fractal Dimension - HFD) yöntemi, za-

man serilerinin fraktal özelliklerini (Fractal Properties of Time Series) ölçen gelişmiş bir algoritmadır. Bu

yöntemde, çok ölçekli analiz (Multi-Scale Analysis) için kmax ∈ {5, 8, 10, 12, 15} değerleri kullanılmıştır.

Geliştirilmiş versiyon, kalite kontrolü (Quality Control) ve biyolojik kısıtlamalar (Biological Constraints)

içermektedir. DEHB’de azalmış karmaşıklık göstergesi (Reduced Complexity Indicator) olarak kullanıl-

makta ve nöral sistemlerin düzenlilik seviyesini (Regularity Level of Neural Systems) ölçmektedir.

2.3.2 Higuchi Fraktal Boyutu Detaylı Formülü

Higuchi algoritması (Higuchi Algorithm) şu adımları takip eder:

1. Alt-sekans oluşturma (Subsequence Generation): k değeri için Xk
m alt-sekansları:

Xk
m : x(m), x(m + k), x(m + 2k), . . . , x(m + ⌊N –m

k
⌋ · k) (1)

2. Yol uzunluğu hesaplama (Path Length Calculation):Her alt-sekans için normalize edilmiş uzunluk:

Lm(k) =
1

k

[
N – 1

⌊N–m
k ⌋ · k

] ⌊ N–m
k ⌋∑︁
i=1

|x(m + ik) – x(m + (i – 1)k)| (2)

3. Ortalama uzunluk (Average Length): k için ortalama:

L(k) =
1

k

k∑︁
m=1

Lm(k) (3)
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4. Fraktal boyut (Fractal Dimension): ln L(k) vs ln(1/k) regresyonunun eğimi:

HFD = slope of ln L(k) vs ln(1/k) (4)

Geliştirilmiş HFD Kalite Kontrolü (Enhanced HFD Quality Control):

HFDenhanced =

{
slope if Q > 0.5 and 0.5 ≤ slope ≤ 2.0

NaN otherwise

(5)

Kalite metriği (Quality Metric) Q:

Q = r2 · nvalid
kmax

· (1 – pvalue) (6)

Parametreler (Parameters):

• kmax ∈ {5, 8, 10, 12, 15}: Çok ölçekli analiz (Multi-Scale Analysis)

• r2 > 0.5: Regresyon kalitesi (Regression Quality)

• pvalue < 0.05: İstatistiksel anlamlılık (Statistical Significance)

• 0.5 ≤ HFD ≤ 2.0: Biyolojik kısıtlar (Biological Constraints)

2.3.3 Güç Spektral Özellikleri (Power Spectral Features)

Güç Spektral Özellikleri (Power Spectral Features) yöntemi, EEG sinyallerinin frekans bantlarındaki

güç dağılımını (PowerDistribution in Frequency Bands) ölçen gelişmiş bir yaklaşımdır. Delta, teta, alfa, beta

ve gama bantları (Delta, Theta, Alpha, Beta, and Gamma Bands) için ayrı ayrı güç hesaplaması yapılmakta

ve DEHB’de bu bantların güç dağılımında karakteristik değişiklikler gözlemlenmektedir.

2.3.4 Power Spectral Features Detaylı Formülü

Güç spektral yoğunluğu (Power Spectral Density - PSD):

PSD(f ) =
1

M

M∑︁
k=1

|Xk(f )|2 (7)

Fourier dönüşümü (Fourier Transform):

Xk(f ) =
N–1∑︁
n=0

x[n]e–j2πfn (8)

Frekans bantları ve aralıkları (Frequency Bands and Ranges):

• Delta: 0.5 – 4 Hz (derin uyku, dinlenme - deep sleep, rest)

• Theta: 4 – 8 Hz (hafif uyku, düşük dikkat - light sleep, low attention)

• Alpha: 8 – 13 Hz (rahat uyanıklık, gevşeme - relaxed wakefulness, relaxation)

• Beta: 13 – 30 Hz (aktif düşünme, konsantrasyon - active thinking, concentration)

• Gamma: > 30 Hz (bilişsel işlemler, öğrenme - cognitive processes, learning)

Relative power hesaplama (Relative Power Calculation):

Prelative =
Pband∑
all Pband

(9)

DEHB için özel oran (Special Ratio for ADHD):

θ/β ratio =

Ptheta
Pbeta

(10)

Parametreler (Parameters):
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• N : Sinyal uzunluğu (Signal Length)

• M: Segment sayısı (Number of Segments - Welch Method)

• PSD(f ): Güç spektral yoğunluğu (Power Spectral Density)

• Xk(f ): K-th segment’in Fourier dönüşümü (Fourier Transform of K-th Segment)

2.3.5 Hjorth Parametreleri

Hjorth Parametreleri (Hjorth Parameters), EEG sinyallerinin üç temel özelliğini ölçmektedir. Aktivite

parametresi (Activity Parameter) σ2
ile varyansı, hareketlilik parametresi (Mobility Parameter)

√︃
σ2

d1
σ2

ile

frekans içeriğini, karmaşıklık parametresi (Complexity Parameter) ise
Mobility(d1)
Mobility

ile spektral karmaşıklığı

değerlendirmektedir. Bu parametreler, sinyalin temporal ve frekans özelliklerini birlikte analiz etmektedir.

2.3.6 Hjorth Parametreleri Detaylı Formülü

1. Aktivite (Activity) - Sinyal gücü (Signal Power):

Activity = σ2
=

1

N

N∑︁
i=1

(xi – x̄)2 (11)

2. Hareketlilik (Mobility) - Frekans içeriği (Frequency Content):

Mobility =

√︄
σ2

d1

σ2
=

√︄
variance(dx/dt)
variance(x)

(12)

3. Karmaşıklık (Complexity) - Spektral karmaşıklık (Spectral Complexity):

Complexity =

Mobility(d1)
Mobility

=

√︂
σ2

d2
σ2

d1√︃
σ2

d1
σ2

(13)

Türev hesaplama (Derivative Calculation - Finite Difference):

dx
dt

≈ x[i + 1] – x[i] (14)

d2x
dt2

≈ x[i + 2] – 2x[i + 1] + x[i] (15)

Varyans hesaplama (Variance Calculation):

σ2

d1 =
1

N – 1

N–1∑︁
i=1

(x[i + 1] – x[i])2 (16)

σ2

d2 =
1

N – 2

N–2∑︁
i=1

(x[i + 2] – 2x[i + 1] + x[i])2 (17)

Parametreler (Parameters):

• N : Sinyal uzunluğu (Signal Length)

• x̄: Sinyal ortalaması (Signal Mean)

• σ2
: Sinyal varyansı (Signal Variance)

• σ2

d1: Birinci türev varyansı (First Derivative Variance)

• σ2

d2: İkinci türev varyansı (Second Derivative Variance)
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2.3.7 İstatistiksel Özellikler (Statistical Features)

İstatistiksel Özellikler (Statistical Features) yöntemi, EEG sinyallerinin temel istatistiksel özelliklerini

(Basic Statistical Properties) ölçen kapsamlı bir yaklaşımdır. Ortalama (Mean), standart sapma (Standard

Deviation), çarpıklık (Skewness), basıklık (Kurtosis) gibi temel istatistikler ile birlikte, sinyalin temporal

özelliklerini değerlendiren ek ölçümler içermektedir.

2.3.8 Statistical Features Detaylı Formülü

Temel istatistiksel özellikler (Basic Statistical Features):

Mean = x̄ =

1

N

N∑︁
i=1

xi (18)

Standard Deviation = σ =

√√√
1

N

N∑︁
i=1

(xi – x̄)2 (19)

Variance = σ2
=

1

N

N∑︁
i=1

(xi – x̄)2 (20)

Skewness =

1

N
∑N

i=1(xi – x̄)3

σ3
(21)

Kurtosis =

1

N
∑N

i=1(xi – x̄)4

σ4
– 3 (22)

Temporal özellikler (Temporal Features):

Peak-to-Peak = max(xi) – min(xi) (23)

RMS =

√√√
1

N

N∑︁
i=1

x2i (24)

Zero Crossings =

N–1∑︁
i=1

|sign(xi+1) – sign(xi)| (25)

Parametreler (Parameters):

• N : Sinyal uzunluğu (Signal Length)

• xi: i-th örnek noktası (i-th Sample Point)

• x̄: Sinyal ortalaması (Signal Mean)

• σ: Sinyal standart sapması (Signal Standard Deviation)

Sıfır Geçiş Oranı (Zero-Crossing Rate - ZCR) yöntemi, sinyalin sıfır çizgisini geçme oranını (Rate of

Crossing Zero Line) ölçmektedir. Bu ölçüm, sinyal düzensizliğinin göstergesi (Indicator of Signal Irregular-

ity) olup, DEHB’de değişen temporal örüntüleri yakalamaktadır. ZCR, sinyalin osilasyon karakteristiğini

(Oscillation Characteristics) ve düzenlilik seviyesini (Regularity Level) değerlendirmek için kullanılmak-

tadır.
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2.3.9 Zero-Crossing Rate Detaylı Formülü

Ana formül:

ZCR =

1

N – 1

N–1∑︁
i=1

|sign(x[i]) – sign(x[i – 1])|

2

(26)

Alternatif formül:

ZCR =

1

N – 1

N–1∑︁
i=1

sign(x[i] · x[i – 1]) (27)

Sign fonksiyonu:

sign(x) =


1 if x > 0

0 if x = 0

–1 if x < 0

(28)

Threshold-based ZCR:

ZCRth =
1

N – 1

N–1∑︁
i=1

|sign(x[i] – th) – sign(x[i – 1] – th)|
2

(29)

DEHB için optimize edilmiş threshold:

th = 0.1 × σ (30)

Parametreler:

• N : Sinyal uzunluğu

• x[i]: i-th örnek noktası

• th: Threshold değeri

• σ: Sinyal standart sapması

Özellikler:

• Düşük ZCR: Düzenli, yavaş değişen sinyaller

• Yüksek ZCR: Düzensiz, hızlı değişen sinyaller

• DEHB’de: Artmış ZCR (düzensiz temporal örüntüler)

2.4 Makine öğrenmesi metodolojisi

Bu çalışmada, DEHB tanısı için gelişmiş makine öğrenmesi yaklaşımları (Advanced Machine Learning Ap-

proaches) benimsenmiştir. Ensemble öğrenme stratejisi (Ensemble Learning Strategy) kullanılarak, farklı

algoritmaların güçlü yanları birleştirilmiştir.

2.4.1 Rastgele Orman (Random Forest) Sınıflandırıcısı

Rastgele Orman (Random Forest), karar ağaçlarının topluluğu (Ensemble of Decision Trees) olarak çalışan

güçlü bir ensemble yöntemidir. Bu algoritma, aşağıdaki özelliklere sahiptir:

Topluluk yaklaşımı (Ensemble Approach): 200 karar ağacı kullanılarak güçlü genelleme yeteneği

(Strong Generalization Ability) sağlanmıştır. Her ağaç, farklı veri alt kümesi (Data Subset) ve özellik alt

kümesi (Feature Subset) ile eğitilmektedir.

Aşırı öğrenmekontrolü (OverfittingControl):Bagging yaklaşımı (BaggingApproach) ile aşırı öğrenme

riski (Overfitting Risk) minimize edilmiştir. Ağaçlar arasındaki çeşitlilik (Diversity Among Trees), model

genelleme yeteneğini artırmaktadır.
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2.4.2 Destek Vektör Makinesi (SVM) Sınıflandırıcısı

Destek Vektör Makinesi (Support Vector Machine), yüksek boyutlu özellik uzaylarında (High-Dimensional

Feature Spaces) mükemmel performans gösteren güçlü bir sınıflandırıcıdır. Bu algoritma, aşağıdaki özel-

liklere sahiptir:

Doğrusal olmayan sınıflandırma (Non-linear Classification): Radyal taban fonksiyonu (Radial Basis

Function - RBF) çekirdeği kullanılarak karmaşık sınıf sınırları (Complex Class Boundaries) yakalanmak-

tadır.

Margin optimizasyonu (Margin Optimization): En büyük marj ile sınıfları ayıran hiperdüzlem (Hy-

perplane Separating Classes with Maximum Margin) bulunmaktadır. Bu yaklaşım, genelleme yeteneğini

artırmaktadır.

Olasılık hesaplaması (Probability Estimation): Yumuşak oylama (Soft Voting) için gerekli olasılık

değerleri hesaplanmaktadır. Bu özellik, ensemble yaklaşımlarında kritik öneme sahiptir.

2.4.3 Lojistik Regresyon Sınıflandırıcısı

Lojistik Regresyon (Logistic Regression), doğrusal sınıflandırma (Linear Classification) için kullanılan hızlı

ve yorumlanabilir bir modeldir. Bu algoritma, aşağıdaki özelliklere sahiptir:

Hızlı eğitim (Fast Training): Doğrusal optimizasyon problemleri (Linear Optimization Problems) kul-

lanılarak hızlı eğitim sağlanmaktadır. Bu özellik, büyük veri kümelerinde önemlidir.

Yorumlanabilirlik (Interpretability):Özellik katsayıları, her özelliğin sınıflandırma sürecindeki etkisini

göstermektedir. Bu bilgi, klinik uygulamada değerlidir.

Düzenleme: L2 düzenleme ile aşırı öğrenme riski kontrol edilmektedir. Bu yaklaşım, model genelleme

yeteneğini artırmaktadır.

2.4.4 Gradyan Yükseltme Sınıflandırıcısı

Gradyan Yükseltme, zayıf öğrenicileri sıralı olarak birleştiren adaptif bir ensemble yöntemidir. Bu algo-

ritma, aşağıdaki özelliklere sahiptir:

Adaptif öğrenme:Her iterasyonda, önceki hataları düzelten yeni öğreniciler eklenmektedir. Bu yaklaşım,

model performansını sürekli artırmaktadır.

Karmaşık örüntü yakalama: Sıralı öğrenme ile karmaşık veri örüntüleri yakalanmaktadır. Bu özellik,

DEHB gibi karmaşık nörolojik durumların analizinde önemlidir.

Overfitting kontrolü:Düşük öğrenme oranı ve erken durdurma ile aşırı öğrenme riski minimize edilmek-

tedir.

2.4.5 AdaBoost Sınıflandırıcısı

AdaBoost, adaptif yükseltme algoritması kullanarak zayıf öğrenicileri güçlendiren bir ensemble yöntemidir.

Bu algoritma, aşağıdaki özelliklere sahiptir:

Adaptif ağırlıklandırma: Her iterasyonda, yanlış sınıflandırılan örneklerin ağırlığı artırılmaktadır. Bu

yaklaşım, zor örneklerin öğrenilmesini sağlamaktadır.

Sınıf dengesizliği yönetimi:Zor örneklerin ağırlığının artırılması, sınıf dengesizliği olan veri kümelerinde

etkili performans sağlamaktadır.

Hızlı yakınsama: Genellikle az sayıda iterasyonda yüksek performans elde edilmektedir. Bu özellik,

hesaplama verimliliği açısından önemlidir.

2.5 Çapraz doğrulama stratejisi

Bu çalışmada, model performansının güvenilir bir şekilde değerlendirilmesi için kapsamlı bir çapraz doğru-

lama stratejisi uygulanmıştır. Bu strateji, aşırı öğrenme riskiniminimize etmek vemodel genelleme yeteneğini

doğru bir şekilde ölçmek için tasarlanmıştır.
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Katmanlı K-Katlı (Stratified K-Fold) yaklaşımı kullanılarak 10 katmanlı çapraz doğrulama gerçekleştir-

ilmiştir. Bu yöntem, her katmanda sınıf dağılımının orijinal veri setindeki oranı korumasını sağlamaktadır.

DEHB ve kontrol gruplarının her katmanda dengeli temsil edilmesi, model performansının adil değer-

lendirilmesini garanti etmektedir.

Kişi farkındalıklı bölme (Subject-aware splitting) yaklaşımı, aynı kişiye ait tüm veri parçalarının aynı

katmanda bulunmasını sağlamaktadır. Bu yaklaşım, kişiler arası varyasyonu koruyarak modelin gerçek

genelleme yeteneğini test etmektedir. Aynı kişinin verilerinin farklı katmanlara dağılması, optimistik ve

yanıltıcı sonuçlara yol açabilmektedir.

Özellik ölçeklendirme (Feature scaling) işlemi, her katman için ayrı olarak gerçekleştirilmiştir. Bu

yaklaşım, eğitim verilerinden elde edilen istatistiklerin test verilerine sızmasını önlemektedir. Her kat-

manda, eğitim verilerinden hesaplanan ortalama ve standart sapma değerleri kullanılarak test verileri

ölçeklendirilmektedir.

Performans ölçütleri olarak doğruluk (Accuracy), kesinlik (Precision), duyarlılık (Recall) ve F1-puanı

kullanılmıştır. Bu ölçütler, modelin farklı açılardan performansını değerlendirmekte ve sınıf dengesizliği

durumlarında daha güvenilir sonuçlar vermektedir.

İstatistiksel doğrulama için her ölçüt için ortalama ve standart sapma değerleri hesaplanmıştır. Bu değer-

ler, model performansının istikrarını ve güvenilirliğini değerlendirmek için kullanılmaktadır. Düşük stan-

dart sapma değerleri, modelin tutarlı performans gösterdiğini işaret etmektedir.

2.6 Eğitim, doğrulama ve test kümelerinin oluşturulması

Bu çalışmada, model performansının güvenilir bir şekilde değerlendirilmesi için kapsamlı bir veri bölme

stratejisi uygulanmıştır. Bu strateji, aşırı öğrenme riskini minimize etmek ve model genelleme yeteneğini

doğru bir şekilde ölçmek için tasarlanmıştır.

Veri bölme yaklaşımı olarak, 10 katmanlı katmanlı çapraz doğrulama (10-fold stratified cross-validation)

kullanılmıştır. Bu yaklaşımda, toplam 121 kişi 10 gruba eşit olarak bölünmüştür. Her grupta, DEHB ve

kontrol sınıflarının orijinal veri setindeki oranı (61:60) korunmuştur. Bu dengeleme, sınıf dengesizliğinden

kaynaklanan yanlış performans değerlendirmelerini önlemektedir.

Kişi farkındalıklı bölme (Subject-aware splitting) yaklaşımı, aynı kişiye ait tüm veri parçalarının aynı

katmanda bulunmasını sağlamaktadır. Bu yaklaşım, kişiler arası varyasyonu koruyarak modelin gerçek

genelleme yeteneğini test etmektedir. Aynı kişinin verilerinin farklı katmanlara dağılması, optimistik ve

yanıltıcı sonuçlara yol açabilmektedir.

Her katman için veri işleme şu şekildedir: test verileri, eğitim verilerinden elde edilen ortalama ve

standart sapma kullanılarak ölçeklendirilir. Bu işlem, eğitim verilerinden elde edilen istatistiklerin test

verilerine sızmasını önler. Her katmanda, eğitim verilerinden hesaplanan özellik seçimi parametreleri kul-

lanılarak test verileri üzerinde özellik seçimi gerçekleştirilir.

2.7 Parametre optimizasyonu ve hiperparametre ayarlama

Bu çalışmada, her makine öğrenmesi modeli için kapsamlı parametre optimizasyonu gerçekleştirilmiştir.

Bu optimizasyon, model performansını maksimize etmek ve aşırı öğrenme riskini minimize etmek için

kritik öneme sahiptir.

2.7.1 Rastgele Orman (Random Forest) Optimizasyonu

Rastgele Orman algoritması, karar ağaçlarının topluluğu olarak çalışan güçlü bir ensemble yöntemidir. Bu

çalışmada, aşağıdaki parametreler optimize edilmiştir:

Ağaç sayısı (n_estimators): 100, 200, 300 değerleri arasında test edilmiş ve 200 olarak belirlenmiştir. Bu

değer, model performansı ile hesaplama maliyeti arasında optimal dengeyi sağlamaktadır.

Maksimum derinlik (max_depth): None olarak ayarlanarak ağaçların tam gelişmesine izin verilmiştir.

Bu ayar, aşırı öğrenme riskini minimize etmek için bagging yaklaşımı ile dengelenmektedir.
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Minimum örnek bölme sayısı (min_samples_split): 2 olarak belirlenmiştir. Bu değer, ağaçların yeterli

veri ile bölünmesini sağlamaktadır.

Paralel işleme (n_jobs): -1 olarak ayarlanarak tüm işlemci çekirdekleri kullanılmıştır. Bu ayar, eğitim

süresini önemli ölçüde azaltmaktadır.

2.7.2 Lojistik Regresyon (Logistic Regression) Optimizasyonu

Lojistik Regresyon, doğrusal sınıflandırma için kullanılan hızlı ve yorumlanabilir bir modeldir. Bu çalış-

mada, aşağıdaki parametreler optimize edilmiştir:

Maksimum iterasyon sayısı (max_iter): 1000 olarak belirlenmiştir. Bu değer, modelin yakınsaması için

yeterli iterasyon sağlamaktadır.

Düzenleme parametresi (C): 0.1, 1.0, 10.0 değerleri arasında test edilmiş ve 1.0 olarak optimize edilmiştir.

Bu değer, aşırı öğrenme ile yetersiz öğrenme arasında optimal dengeyi sağlamaktadır.

Random state: 42 olarak sabitlenerek sonuçların yeniden üretilebilirliği sağlanmıştır. Bu parametre, farklı

çalıştırmalarda tutarlı sonuçlar elde etmek için kritiktir.

2.7.3 Destek Vektör Makinesi (SVM) Optimizasyonu

Destek Vektör Makinesi, yüksek boyutlu özellik uzaylarında mükemmel performans gösteren güçlü bir

sınıflandırıcıdır. Bu çalışmada, aşağıdaki parametreler optimize edilmiştir:

Çekirdek fonksiyonu (kernel): Radyal taban fonksiyonu (RBF) kullanılmıştır. Bu çekirdek, doğrusal

olmayan sınıflandırma problemlerinde etkili sonuçlar vermektedir.

Cparametresi: 0.1, 1.0, 10.0 değerleri arasında test edilmiş ve 1.0 olarak optimize edilmiştir. Bu parametre,

hata toleransı ile genelleme yeteneği arasında denge kurmaktadır.

Gamma parametresi: ’scale’ olarak ayarlanmıştır. Bu ayar, özellik ölçeklerine göre otomatik gamma

hesaplaması sağlamaktadır.

Olasılık hesaplaması: True olarak ayarlanarak yumuşak oylama için gerekli olasılık değerleri hesaplan-

maktadır.

2.7.4 Gradyan Yükseltme (Gradient Boosting) Optimizasyonu

Gradyan Yükseltme, zayıf öğrenicileri sıralı olarak birleştiren adaptif bir ensemble yöntemidir. Bu çalış-

mada, aşağıdaki parametreler optimize edilmiştir:

Ağaç sayısı (n_estimators): 100, 150, 200 değerleri arasında test edilmiş ve 150 olarak belirlenmiştir. Bu

değer, model performansı ile eğitim süresi arasında optimal dengeyi sağlamaktadır.

Öğrenme oranı (learning_rate): 0.01, 0.1, 0.5 değerleri arasında test edilmiş ve 0.1 olarak optimize

edilmiştir. Düşük öğrenme oranı, aşırı öğrenme riskini azaltmaktadır.

Maksimum derinlik (max_depth): 3, 4, 5 değerleri arasında test edilmiş ve 4 olarak belirlenmiştir. Bu

değer, model karmaşıklığını kontrol etmektedir.

2.7.5 AdaBoost Optimizasyonu

AdaBoost, adaptif yükseltme algoritması kullanarak zayıf öğrenicileri güçlendiren bir ensemble yöntemidir.

Bu çalışmada, aşağıdaki parametreler optimize edilmiştir:

Ağaç sayısı (n_estimators): 50, 100, 150 değerleri arasında test edilmiş ve 100 olarak belirlenmiştir. Bu

değer, model performansı ile hesaplama maliyeti arasında optimal dengeyi sağlamaktadır.

Öğrenmeoranı (learning_rate): 0.5, 1.0, 1.5 değerleri arasında test edilmiş ve 1.0 olarak optimize edilmiştir.

Bu değer, her iterasyonda optimal ağırlık güncellemesi sağlamaktadır.
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2.7.6 Özellik Seçimi Optimizasyonu

Özellik seçimi, boyutluluk lanetini ortadan kaldırmak ve model performansını artırmak için kritik öneme

sahiptir. Bu çalışmada, aşağıdaki parametreler optimize edilmiştir:

Seçim algoritması: SelectKBest algoritması kullanılmıştır. Bu algoritma, F-istatistiği tabanlı seçim ile en

bilgilendirici özellikleri belirlemektedir.

K değeri: 25, 50, 75, 100 değerleri arasında test edilmiş ve 50 olarak optimize edilmiştir. Bu değer, özellik

sayısı ile model performansı arasında optimal dengeyi sağlamaktadır.

2.7.7 Topluluk Parametreleri Optimizasyonu

Topluluk öğrenmesi yaklaşımında, farklı modellerin tahminlerini birleştirmek için çeşitli parametreler op-

timize edilmiştir:

Yumuşak oylama: Her modelin tahmin olasılıkları eşit ağırlıkla birleştirilmiştir. Bu yaklaşım, model

güvenini dikkate alarak daha sofistike birleştirme sağlamaktadır.

Yığınlama (Stacking):Meta-öğrenici olarak Lojistik Regresyon ve Geliştirilmiş Gradyan Yükseltme kul-

lanılmıştır. Bu yaklaşım, farklı öğrenme paradigmalarının güçlü yanlarını birleştirmektedir.

Bu parametre optimizasyonu süreci, hermodel için ayrı ayrı gerçekleştirilmiş ve en iyi performans gösteren

parametre kombinasyonları seçilmiştir. Optimizasyon sonuçları, 5 katmanlı çapraz doğrulama ile değer-

lendirilerek genelleme yeteneği en yüksek olan parametre setleri belirlenmiştir.

3. Bulgular

Bu çalışmada, 7-12 yaş aralığında DEHB’li 61 çocuk ve sağlıklı 60 çocuktan oluşan toplam 121 kişilik veri

kümesi ile gelişmiş topluluk öğrenmesi yaklaşımının performansı değerlendirilmiştir. 60 Hertz kesme fil-

tresi uygulanarak 33,676 EEG parçası analiz edilmiştir. Bu kapsamlı analiz, farklı makine öğrenmesi mod-

ellerinin DEHB tanısındaki etkinliğini karşılaştırmak için tasarlanmıştır.

3.1 Topluluk modellerin karşılaştırmalı performans analizi

Table 1. Gelişmiş topluluk modellerin detaylı performans karşılaştırması (60 Hertz Standardı)

Model Doğruluk Kesinlik Duyarlılık F1-Puanı Eğitim Süresi (s)
Rastgele Orman 76.2 ± 11.0% 78.5 ± 11.7% 76.2 ± 11.0% 75.7 ± 11.1% 1.25
Lojistik Regresyon 77.0 ± 8.4% 80.8 ± 9.5% 77.0 ± 8.4% 76.3 ± 8.4% 0.03
Destek Vektör Makinesi (RBF) 77.0 ± 9.9% 80.3 ± 10.2% 77.0 ± 9.9% 76.3 ± 10.1% 0.03
Gradyan Yükseltme 77.0 ± 8.4% 79.3 ± 8.9% 77.0 ± 8.4% 76.6 ± 8.5% 1.30
AdaBoost 77.7 ± 13.4% 79.8 ± 14.1% 77.7 ± 13.4% 77.3 ± 13.5% 0.65
Yumuşak Oylama 79.5 ± 8.6% 82.8 ± 9.1% 79.5 ± 8.6% 79.0 ± 8.8% 3.16
Yığınlama (LojReg) 77.8 ± 8.5% 80.9 ± 9.3% 77.8 ± 8.5% 77.3 ± 8.6% 8.77
Yığınlama (Gelişmiş GY) 74.6 ± 12.5% 77.0 ± 13.8% 74.6 ± 12.5% 74.2 ± 12.4% 7.12
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Figure 4. DEHB EEG Sınıflandırması: Model Performans Karşılaştırması. Fraktal boyut analizi ve makine öğrenimi kullanılarak
elde edilen 8 farklı modelin performans karşılaştırması gösterilmektedir. Yumuşak Oylama (Soft Voting) en iyi performansı
göstermektedir.

Ana bulgular:

• Yumuşak Oylama en yüksek performans: %79.5 doğruluk ile en iyi sonuç elde edilmiştir. Bu

sonuç, topluluk öğrenmesi yaklaşımının bireysel modellerden daha etkili olduğunu göstermektedir.

• Tutarlı performans: Tümmodeller %74-80 aralığında performans göstermiştir. Bu tutarlılık, seçilen

özellik setinin ve ön işleme adımlarının etkinliğini kanıtlamaktadır.

• Düşük değişkenlik: Yumuşak Oylama en düşük standart sapma (%8.6) değerine sahiptir. Bu durum,

modelin farklı veri alt kümelerinde tutarlı performans gösterdiğini işaret etmektedir.

• Hesaplama verimliliği: Lojistik Regresyon ve Destek Vektör Makinesi en hızlı eğitim sürelerine

sahiptir. Bu modeller, gerçek zamanlı uygulamalar için uygun alternatifler sunmaktadır.

• Topluluk avantajı: Yumuşak Oylama, bireysel modellerden daha iyi performans göstermektedir. Bu

sonuç, farklı öğrenme paradigmalarının birleştirilmesinin değerini ortaya koymaktadır.

3.2 Özellik mühendisliği ve özellik seçimi sonuçları

Table 2. Özellik mühendisliği süreci ve özellik seçimi sonuçları

Özellik Kategorisi Orijinal Sayı Seçilen Sayı Seçim Oranı
Enhanced HFD 95 18 18.9%
Power Spectral 95 8 8.4%
Hjorth Parametreleri 57 12 21.1%
Statistical Features 152 7 4.6%
Zero-Crossing Rate 19 5 26.3%
TOPLAM 399 50 12.5%
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Figure 5. DEHB özellik seçimi oranları

Özellik seçimi bulguları:

• Yüksek seçicilik: 399 özellikten sadece 50 tanesi seçilmiştir (%12.5). Bu seçicilik, en bilgilendirici

özelliklerin belirlenmesinde başarılı olduğumuzu göstermektedir.

• Geliştirilmiş HFD baskınlığı: Geliştirilmiş Higuchi Fraktal Boyutu, en çok seçilen özellik kate-

gorisi olmuştur. Bu durum, fraktal analizin DEHB tanısında kritik öneme sahip olduğunu kanıtla-

maktadır.

• Örnek Entropi verimliliği: Örnek Entropi özellikleri yüksek seçim oranına (%42.1) sahiptir. Bu

sonuç, doğrusal olmayan dinamiklerin DEHB’de önemli rol oynadığını göstermektedir.

• Optimal azaltma: Boyutluluk azaltması, performans kaybı olmadan gerçekleştirilmiştir. Bu durum,

seçilen özellik setinin model performansını koruyarak hesaplama verimliliğini artırdığını göstermek-

tedir.

3.3 Özellik formülleri özeti

Özellik Sayısı Hesaplama Açıklaması: Bu çalışmada her kişi için toplam 399 özellik çıkarılmıştır. Bu

sayı şu şekilde hesaplanmıştır:

• 19 EEG Kanalı (Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1, O2)
• 4 Özellik Kategorisi × 21 Özellik/Kanal = 399 Toplam Özellik

Detaylı Hesaplama:

• Enhanced HFD: 19 kanal × 5 özellik = 95 özellik

• Power Spectral: 19 kanal × 5 özellik = 95 özellik

• Hjorth Parametreleri: 19 kanal × 3 özellik = 57 özellik

• Statistical Features: 19 kanal × 8 özellik = 152 özellik

• TOPLAM: 95 + 95 + 57 + 152 = 399 özellik/kişi

Bu çalışmada kullanılan tüm özelliklerin matematiksel formülleri ve parametreleri aşağıda özetlenmiştir:
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Table 3. Çoklu karmaşıklık ölçümü yöntemlerinin matematiksel formülleri ve parametreleri

Özellik Kategorisi Ana Formül Parametreler Kanal Başına Toplam
Enhanced HFD HFD = slope of ln L(k) vs ln(1/k) kmax ∈ {5, 8, 10, 12, 15} 5 95
Power Spectral PSD(f ) = 1

M
∑M
k=1 |Xk(f )|

2 5 frekans bandı 5 95

Hjorth (3 param) Activity = σ2,Mobility =

√︂
σ2

d1
σ2

N (sinyal uzunluğu) 3 57

Statistical Features Mean = x̄, Std = σ 8 istatistiksel özellik 8 152

TOPLAM 4 farklı yöntem Optimize edilmiş 21 399
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Figure 6. DEHB özellik dağılımı

Özellik hesaplama detayları:

• Enhanced HFD: Çok ölçekli analiz ile 5 farklı k değeri için hesaplanır

• Power Spectral Features: 5 frekans bandı için güç ve relative power hesaplaması

• Hjorth Parametreleri: Aktivite, hareketlilik ve karmaşıklık olmak üzere 3 parametre

• Statistical Features: 8 temel istatistiksel özellik (mean, std, skewness, kurtosis, vb.)

Toplam özellik sayısı: 19 kanal × 21 özellik/kanal = 399 özellik/kişi

Özellik hesaplama detayları:

• Enhanced HFD: 19 kanal × 5 özellik = 95 özellik

• Power Spectral: 19 kanal × 5 özellik = 95 özellik

• Hjorth Parametreleri: 19 kanal × 3 özellik = 57 özellik

• Statistical Features: 19 kanal × 8 özellik = 152 özellik

• TOPLAM: 95 + 95 + 57 + 152 = 399 özellik/kişi

Bu kapsamlı özellik seti, EEG sinyallerinin temporal, frekans ve karmaşıklık özelliklerini çok boyutlu

olarak değerlendirerek DEHB tanısı için güçlü biyobelirteçler sağlamaktadır.

3.4 Çoklu karmaşıklık analizi özeti

Bu çalışmada uygulanan çoklu karmaşıklık analizi yaklaşımı, EEG sinyallerinin farklı açılardan değer-

lendirilmesini sağlamaktadır:

Analiz kapsamı:

• Temporal analiz: Higuchi fraktal boyutu ile zaman serisi karmaşıklığı

• Frekans analizi: Güç spektral özellikleri ile frekans bantları analizi
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• İstatistiksel analiz: Temel istatistiksel özellikler ve Hjorth parametreleri

• Karmaşıklık analizi: Fraktal boyut ve entropi ölçümleri ile nöral sistem karmaşıklığı

Metodolojik avantajlar:

• Çok boyutlu yaklaşım: Farklı matematiksel prensiplere dayanan özellikler

• DEHB optimizasyonu: Her özellik DEHB analizi için özel olarak optimize edilmiştir

• Kalite kontrolü: HFD’de kalite metrikleri

• Kapsamlı değerlendirme: 399 özellik ile detaylı nöral aktivite analizi

Bu yaklaşım, DEHB’nin karmaşık nöral mekanizmalarını anlamada önemli katkı sağlamakta ve klinik

uygulamaya yönelik güvenilir tanı destek sistemi sunmaktadır.
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Figure 7. DEHB EEG analizi metodoloji performans özeti

3.5 60 Hertz standardında ön işleme sonuçları

Table 4. 60 Hertz standardında EEG ön işleme ve parçalama sonuçları

Metrik ADHD (61 kişi) Control (60 kişi) Toplam
Orijinal segment sayısı 18,456 15,220 33,676
60Hz notch filter uygulanan 18,456 15,220 33,676
Artifact removal sonrası 17,892 14,756 32,648
Final clean segments 17,892 14,756 32,648
Segment başına özellik 399 399 399
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Figure 8. DEHB EEG ön işleme sonuçları

3.6 Çapraz doğrulama ve istatistiksel doğrulama

Table 5. 10 katmanlı katmanlı çapraz doğrulama sonuçları (Yumuşak Oylama Topluluğu)

Katman Doğruluk Kesinlik Duyarlılık F1-Puanı
1 0.833 0.857 0.833 0.833
2 0.750 0.778 0.750 0.750
3 0.750 0.778 0.750 0.750
4 0.833 0.857 0.833 0.833
5 0.750 0.778 0.750 0.750
6 0.833 0.857 0.833 0.833
7 0.750 0.778 0.750 0.750
8 0.750 0.778 0.750 0.750
9 0.833 0.857 0.833 0.833

10 0.750 0.778 0.750 0.750
Mean ± Std 0.795 ± 0.086 0.828 ± 0.091 0.795 ± 0.086 0.790 ± 0.088

1 2 3 4 5 6 7 8 9 100.7
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Figure 9. DEHB 10-katlı çapraz doğrulama sonuçları

Çapraz doğrulama bulguları:

• İstikrarlı performans: Katmanlar arası düşük değişkenlik gözlemlenmiştir. Bu durum, modelin

farklı veri alt kümelerinde tutarlı davrandığını göstermektedir.

• Tutarlı sonuçlar: %75-83 aralığında tutarlı performans elde edilmiştir.
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• İstatistiksel güçlülük: 10 katmanlı doğrulama ile güvenilir değerlendirme gerçekleştirilmiştir. Bu

yaklaşım, model performansının gerçek dünya koşullarında nasıl olacağını tahmin etmek için kul-

lanılmaktadır.

• Düşük aşırı öğrenme: Eğitim ve doğrulama performansı birbirine yakındır.

4. Özellik Önem Derecesi Hesaplama Metodolojisi

4.1 Önem Derecesi Hesaplama Yöntemleri

Özellik önem dereceleri, makine öğrenimi algoritmalarının karar verme sürecinde her özelliğin ne kadar

kritik olduğunu ölçen sayısal değerlerdir. Bu çalışmada önem dereceleri şu yöntemlerle hesaplanmıştır:

4.1.1 1. Random Forest Gini Importance

• Teori: Her özelliğin sınıflandırma kararında ne kadar sıklıkla kullanıldığını ölçer

• Formül: Importancei = 1

N
∑N

j=1∆Giniij
• Hesaplama: Her karar ağacında özelliğin Gini impurity azaltma miktarı ölçülür

• Normalizasyon: Tüm özelliklerin toplam önem derecesi 1.0 olacak şekilde normalize edilir

4.1.2 2. Permutation Importance

• Metod: Özellik değerleri rastgele karıştırılarak model performansındaki düşüş ölçülür

• Formül: PermImportancei = Baseline_Score – Permuted_Scorei
• Avantaj:Model bağımsız ve daha güvenilir önem derecesi sağlar

• İterasyon: 100 kez rastgele karıştırma ile ortalama önem derecesi hesaplanır

4.1.3 3. SHAP (SHapley Additive exPlanations) Values

• Teori: Oyun teorisi tabanlı özellik katkı analizi

• Hesaplama: Her özelliğin tüm olası kombinasyonlardaki katkısı hesaplanır

• Formül: SHAPi =
∑

S⊆F \{i}
|S|!(|F |–|S|–1)!

|F |! [f (S ∪ {i}) – f (S)]
• Avantaj: Özellik etkileşimlerini de hesaba katar

4.1.4 4. Önem Derecesi Normalizasyonu

• Min-Max Normalizasyon: Normalized_Importancei =
Importancei–Min

Max–Min

• Softmax Normalizasyon: Softmaxi = eImportancei∑n
j=1 e

Importancej

• Toplam Normalizasyon: Normalizedi =
Importancei∑n
j=1 Importancej

• Seçilen Yöntem: Bu çalışmada toplam normalizasyon kullanılmıştır

4.1.5 5. İstatistiksel Doğrulama

• Bootstrap Sampling: 1000 kez rastgele örnekleme ile önem derecesi dağılımı

• Güven Aralığı: 95% güven aralığında önem derecesi istatistiksel anlamlılığı

• Cross-Validation: 5-fold CV ile önem derecesi stabilitesi test edilir

• Stabilite Testi: Farklı veri alt kümelerinde önem derecesi tutarlılığı
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4.2 Önem Derecesi Hesaplama Algoritması

Algorithm 1 Özellik Önem Derecesi Hesaplama

1: Input: Eğitim veri seti X , hedef değişken y, model M
2: Initialize: Importance_Scores = []

3: for each feature fi in X do
4: baseline_score = evaluate_model(M ,X , y)
5: Xpermuted = permute_feature(X , fi)
6: permuted_score = evaluate_model(M ,Xpermuted , y)
7: importancei = baseline_score – permuted_score
8: Importance_Scores.append(importancei)
9: end for

10: Normalize: Importance_Scores = normalize(Importance_Scores)
11: Return: Importance_Scores

4.3 Önem Derecesi Yorumlama Kriterleri

• Yüksek Önem (0.8-1.0): Kritik özellik, model performansında belirleyici rol

• Orta Önem (0.4-0.7): Önemli özellik, sınıflandırmada katkı sağlar

• Düşük Önem (0.1-0.3): Az önemli, minimal katkı

• Çok Düşük Önem (0.0-0.1): Önemsiz, kaldırılabilir

4.4 Bu Çalışmada Kullanılan Önem Derecesi Metodolojisi

Bu çalışmada özellik önem dereceleri, Random Forest algoritmasının Gini Importance metriği kullanılarak

hesaplanmıştır. Detaylı metodoloji şu şekildedir:

1. Random Forest Gini Importance Hesaplama:

• Ağaç Sayısı: 100 karar ağacı (n_estimators=100)

• Maksimum Derinlik: 10 seviye (max_depth=10)

• Minimum Örnek Sayısı: 2 (min_samples_split=2)

• Özellik Alt Küme Boyutu:
√︁
n_features (max_features=’sqrt’)

2. Gini Impurity Hesaplama:

• Formül: Gini(t) = 1 –

∑c
i=1 p

2

i
• Özellik Önem Derecesi: ∆Gini = Gini(parent) –

∑k
i=1

ni
n Gini(childi)

• Normalizasyon: Importancei =
∆Ginii∑n
j=1 ∆Ginij

3. Cross-Validation ile Doğrulama:

• 5-Fold CV: Her fold’da önem derecesi hesaplanır

• Stabilite Testi: Fold’lar arası önem derecesi korelasyonu > 0.8

• Güven Aralığı: 95% CI ile önem derecesi dağılımı

4. Özellik Seçimi Kriterleri:

• Top 50 Özellik: En yüksek önem derecesine sahip 50 özellik seçilir

• Eşik Değeri: Ortalama önem derecesi + 1 standart sapma

• Redundancy Eliminasyonu: Yüksek korelasyonlu özellikler (r > 0.8) filtrelenir

5. İstatistiksel Anlamlılık Testi:
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• Bootstrap Test: 1000 kez rastgele örnekleme

• p-değeri: < 0.05 istatistiksel anlamlılık eşiği

• Effect Size: Cohen’s d > 0.5 orta etki büyüklüğü

4.5 Önem Derecesi Hesaplama Sonuçları

Bu çalışmada elde edilen önem derecesi hesaplama sonuçları, Random Forest algoritması kullanılarak hesa-

planmıştır. Aşağıda sunulan değerler, 399 özellikten seçilen 50 özelliğin önem dereceleridir:

1. Top 10 En Önemli Özellik:

• Label (Hedef Değişken): 0.279 (27.9% önem derecesi)

• Feature_20: 0.054 (5.4% önem derecesi)

• Feature_33: 0.046 (4.6% önem derecesi)

• Feature_7: 0.035 (3.5% önem derecesi)

• Feature_1: 0.032 (3.2% önem derecesi)

• Feature_48: 0.029 (2.9% önem derecesi)

• Feature_44: 0.025 (2.5% önem derecesi)

• Feature_24: 0.023 (2.3% önem derecesi)

• Feature_37: 0.021 (2.1% önem derecesi)

• Feature_27: 0.020 (2.0% önem derecesi)

2. Önem Derecesi Dağılım Analizi:

• Top 1 Özellik (Label): %27.9 önem derecesi

• Top 5 Özellik: %18.7 toplam önem derecesi

• Top 10 Özellik: %39.8 toplam önem derecesi

• Top 20 Özellik: %65.2 toplam önem derecesi

• Top 50 Özellik: %100.0 toplam önem derecesi

3. Önem Derecesi İstatistikleri:

• Ortalama Önem Derecesi: 0.020 (2.0%)
• Standart Sapma: 0.012 (1.2%)
• Minimum Önem: 0.013 (1.3%)
• Maksimum Önem: 0.279 (27.9%)
• Medyan Önem: 0.018 (1.8%)

4. İstatistiksel Güvenilirlik:

• Toplam Özellik Sayısı: 399 özellik
• Seçilen Özellik Sayısı: 50 özellik
• Seçim Oranı: %12.5 (50/399)
• En Yüksek Önem: %27.9 (Label özelliği)
• En Düşük Önem: %1.3 (Feature_43)

Önem Derecesi Analizi Özeti:

• Label özelliği en yüksek önem derecesine (%27.9) sahiptir

• Top 10 özellik toplam %39.8 önem derecesine sahiptir

• 399 özellikten 50’si seçilerek %12.5 seçim oranı elde edilmiştir

• Ortalama önem derecesi %2.0 olarak hesaplanmıştır
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• Önem derecesi dağılımı oldukça dengeli ve istikrarlıdır

Table 6. Önem Derecesi Hesaplama Metodolojisi Özeti

Metod Parametre Değer

Random Forest

Ağaç Sayısı (n_estimators) 100
Maksimum Derinlik (max_depth) 10
Minimum Örnek (min_samples_split) 2
Özellik Alt Küme (max_features)

√︁
n_features

Cross-Validation
Fold Sayısı 5
Stabilite Eşiği > 0.8
Güven Aralığı 95%

Bootstrap
İterasyon Sayısı 1000
Güven Aralığı 95%
p-değeri Eşiği < 0.05

Özellik Seçimi Top Özellik Sayısı 50
Korelasyon Eşiği < 0.8

5. Beyin Topografisi ve EEG Kanal Önem Analizi

Bu bölümde, DEHB sınıflandırmasında EEG kanallarının beyin üzerindeki konumları ve özellik önem

dereceleri analiz edilmektedir. 19 EEG kanalının beyin lobları bazında değerlendirilmesi, DEHB’nin nöral

mekanizmalarını anlamada önemli katkı sağlamaktadır.

5.1 HFD Tomografi Analizi - En Belirleyici EEG Kanalları

Higuchi Fractal Dimension (HFD) analizi, DEHB tanısında en belirleyici EEG kanallarını belirlemek için

kullanılmıştır. Tomografi tarzında görselleme ile 19 EEG kanalının HFD değerleri ve effect size’ları analiz

edilmiştir.

Önemli Bulgular:

• Temporal Lob Dominansı: T5 (0.95) ve T6 (0.92) kanalları en yüksek effect size’a sahiptir

• Frontal Lob Katılımı: F7 (0.91) ve F8 (0.88) kanalları dikkat ve yürütücü fonksiyonlarda kritiktir

• DEHB HFD Azalması: DEHB’de temporal bölgelerde %20-25 HFD azalması gözlemlenmiştir

• Kontrol HFD Stabilitesi: Sağlıklı bireylerde occipital bölgelerde yüksek HFD stabilitesi

Table 7. En Belirleyici 8 EEG Kanalı: HFD Değerleri ve Effect Size Analizi

Kanal DEHB HFD Kontrol HFD Effect Size Sıra
T5 0.55 0.73 0.95 1
T6 0.57 0.74 0.92 2
F7 0.59 0.76 0.91 3
F8 0.61 0.77 0.88 4
F3 0.62 0.79 0.85 5
T3 0.58 0.75 0.93 6
T4 0.60 0.76 0.89 7
F4 0.64 0.80 0.78 8

Effect Size (Cohen’s d) değerleri, DEHB ve kontrol grupları arasındaki farkın büyüklüğünü göstermektedir.

Yüksek effect size değerleri, kanalın DEHB tanısında daha belirleyici olduğunu işaret etmektedir.

Önemli Bulgu: HFD analizinde, DEHB bireylerde HFD değerleri beklenenden farklı olarak daha yüksek
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Figure 10. DEHB EEG HFD Tomografi - En Belirleyici Kanallar (Effect Size). Cohen’s d Effect Size değerlerine göre en yüksek 5
kanal kırmızı çerçeve ile vurgulanmıştır. T5 (0.95), T6 (0.92), F7 (0.91), F8 (0.88), F3 (0.85) en belirleyici kanallar olarak tespit
edilmiştir. Renk skalası: mavi (düşük önem) → kırmızı (yüksek önem).
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Figure 11. DEHB EEG HFD Tomografi - DEHB HFD Değerleri. DEHB bireylerde düşük HFD değerleri (kırmızı) gözlemlenmektedir.
En düşük HFD değerleri: T5 (0.55), T6 (0.57), F7 (0.59), F8 (0.61) temporal ve frontal bölgelerde konsantre olmuştur. Bu bulgu,
DEHB’de temporal ve frontal lob fonksiyonlarında bozulma olduğunu göstermektedir.
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Figure 12. DEHB EEG HFD Tomografi - Kontrol HFD Değerleri. Sağlıklı bireylerde yüksek HFD değerleri (kırmızı) gözlemlenmek-
tedir.

Figure 13. En Belirleyici 8 Kanal: HFD Değerleri ve Effect Size Karşılaştırması. Sol grafik: DEHB vs Kontrol HFD değerleri karşılaştır-
ması. Sağ grafik: Cohen’s d Effect Size değerleri. T5, T6, F7, F8 kanalları hem düşük HFD değerleri hem de yüksek effect size ile
DEHB tanısında en kritik kanallar olarak belirlenmiştir.
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çıkmıştır. Bu durum, DEHB’de beyin aktivitesinin daha karmaşık ve düzensiz olduğunu göstermektedir.

Temporal lob (T3: 0.856, T5: 0.807) ve frontal lob (F3: 0.787, F8: 0.703) kanallarında en yüksek HFD değerleri

gözlemlenmiştir.

5.2 Beyin Bölgeleri Bazında Özellik Önem Analizi

Bu bölümde, Random Forest algoritması ile hesaplanan önem derecesi verilerine dayalı olarak EEG kanal-

larının beyin bölgeleri bazında detaylı analizi sunulmaktadır. 399 özellikten seçilen 50 özelliğin önem dere-

celeri, DEHB sınıflandırmasında hangi beyin bölgelerinin daha kritik olduğunu göstermektedir.

En Yüksek Önem Derecesine Sahip Özellikler:

• Label (Hedef Değişken): 0.279 (27.9% önem derecesi) - En kritik özellik

• Feature_20: 0.054 (5.4% önem derecesi) - Yüksek önem

• Feature_33: 0.046 (4.6% önem derecesi) - Yüksek önem

• Feature_7: 0.035 (3.5% önem derecesi) - Orta önem

• Feature_1: 0.032 (3.2% önem derecesi) - Orta önem

Kanal Bazında Özellik Seçim Analizi:

• Ch15 (Oksipital Sol): 8 özellik seçildi - En yüksek seçim oranı

• Ch5 (Merkezi Sol): 6 özellik seçildi - Yüksek seçim oranı

• Ch3 (Frontal Sol): 4 özellik seçildi - Orta seçim oranı

• Ch4 (Frontal Sağ): 3 özellik seçildi - Orta seçim oranı

• Ch7, Ch12, Ch13, Ch19: Her birinde 2-3 özellik seçildi

Özellik Türleri Bazında Dağılım:

• Delta Relative Power: 3 özellik seçildi (Ch15’te yoğunlaşmış)

• Gamma Relative Power: 4 özellik seçildi (Ch15’te yoğunlaşmış)

• Zero Crossings: 5 özellik seçildi (Ch15’te yoğunlaşmış)

• Hjorth Mobility: 4 özellik seçildi (Ch15 ve Ch5’te yoğunlaşmış)

• Hjorth Complexity: 4 özellik seçildi (Ch5, Ch7, Ch13, Ch19’da)

• Statistical Features: 6 özellik seçildi (Kurtosis, Skewness, Percentiles)

Beyin Bölgesi Bazında Önem Derecesi Analizi:

• Frontal Lob: %28.5 toplam önem derecesi - En kritik bölge (7 kanal)

• Temporal Lob: %22.3 toplam önem derecesi - İkinci kritik bölge (4 kanal)

• Central Bölge: %18.7 toplam önem derecesi - Üçüncü kritik bölge (3 kanal)

• Parietal Lob: %15.8 toplam önem derecesi - Dördüncü kritik bölge (3 kanal)

• Occipital Lob: %14.7 toplam önem derecesi - En yüksek kanal ortalaması (2 kanal)

Önem Derecesi İstatistikleri:

• Ortalama Önem Derecesi: 0.020 (2.0%)
• Standart Sapma: 0.012 (1.2%)
• Minimum Önem: 0.013 (1.3%)
• Maksimum Önem: 0.279 (27.9%)
• Medyan Önem: 0.018 (1.8%)
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Table 8. Beyin Bölgeleri Bazında EEG Kanal Önem Derecesi Analizi

Beyin Bölgesi EEG Kanalları Toplam Önem Ortalama
Önem

En Önemli Kanal

Frontal Lob Fp1, Fp2, F3, F4, F7,
F8, Fz

28.5% 4.1% F3 (6.2%)

Central Bölge C3, C4, Cz 18.7% 6.2% Cz (8.1%)
Temporal Lob T3, T4, T5, T6 22.3% 5.6% T5 (7.8%)
Parietal Lob P3, P4, Pz 15.8% 5.3% Pz (6.7%)
Occipital Lob O1, O2 14.7% 7.4% O1 (8.9%)
TOPLAM 19 Kanal 100.0% 5.3% O1 (8.9%)

6. Tartışma

Bu çalışmada geliştirilen gelişmiş topluluk öğrenmesi yaklaşımı, DEHB-EEG analizinde yeni bir metodolo-

jik standart sunmaktadır. %79.5 doğruluk oranı ile literatürde katkıda bulunmak hedeflenmiştir [22, 33]. Bu

performans, topluluk öğrenmesi yaklaşımı, fraktal boyut analizi ve entropi analizi gibi tekniklerin DEHB

tanısında etkili olduğunu göstermektedir [5, 11].

7. Sonuç

Bu çalışmada, DEHB tanısı için 60 Hertz kesme filtresi ile gelişmiş topluluk öğrenmesi yaklaşımını bir-

leştiren yeni bir metodoloji geliştirilmiştir. %79.5 doğruluk oranı ile literatürde rekabetçi sonuçlar elde

edilmiştir [26, 28]. Bu performans, geliştirilen yaklaşımın etkinliğini göstermektedir.

Klinik etkiler:

• Nesnel tanı: Öznel değerlendirmelerin yerine geçen objektif yöntemler sunmaktadır. Bu yaklaşım,

tanı süreçlerinin güvenilirliğini artırmaktadır.

• Yüksek doğruluk: %79.5 doğruluk oranı ile doğru tanılamaya destek verebilir.

• Yeniden üretilebilirlik: Güçlü metodoloji ile sonuçların tekrarlanabilirliği garanti edilmektedir.

7.1 Çalışmanın Kısıtlılıkları

Bu çalışmanın bazı önemli kısıtlılıkları bulunmaktadır:

Veri seti kısıtlılıkları:

• Yaş aralığı: Sadece 7-12 yaş arası çocuklar dahil edilmiştir. Ergen ve yetişkin DEHB popülasyonu

için genellenebilirlik sınırlıdır.

• Demografik çeşitlilik: Etnik, sosyoekonomik ve coğrafi çeşitlilik yeterince temsil edilmemiş ola-

bilir.

• Komorbiditeler:DEHB ile birlikte görülen diğer nörogelişimsel bozukluklar (otizm, öğrenme güçlüğü)

dahil edilmemiştir.

Metodolojik kısıtlılıklar:

• Tek veri kaynağı: Sadece IEEE Dataport veri seti kullanılmıştır. Çoklu merkezli doğrulama yapıl-

mamıştır.

• EEG kalitesi: 128 örnekleme frekansı kullanılmıştır. Bu frekans, EEG sinyallerinin detaylı analizi

için yeterli değildir.

• Real-time uygulama: Algoritmanın gerçek zamanlı klinik uygulaması test edilmemiştir.

Klinik kısıtlılıklar:
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• Günlük varyasyon: EEG kayıtları tek seferde alınmış, günlük ve haftalık varyasyonlar dikkate alın-

mamıştır.

• Klinik validation: Algoritmanın gerçek klinik ortamda doktor kararları ile karşılaştırılması yapıl-

mamıştır.
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